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Note 

Relationship between the Truncation Errors 
of Centered Finite-Difference Approximations 

on Uniform and Nonuniform Meshes 

Two of the major problems facing the numerical analyst when constructing the 
numerical solution of partial differential equations are (1) the numerical implemen- 
tation of the boundary conditions along the boundaries of the physical space, and (2) 
the selection of the finite-difference mesh to represent the continuous physical space. 

The careful implementation of boundary conditions is essential. For the more 
common coordinate systems (i.e., Cartesian, cylindrical, and spherical), the boun- 
daries of the physical space seldom lie along coordinate lines. When only first-order 
accuracy is required, the implementation of boundary conditions along arbitrary lines 
in the physical space presents no particular problem. When higher-order accuracy is 
desired, however, serious problems arise. This has led to the extensive use of coor- 
dinate transformations to map the boundaries of the physical space onto coordinate 
lines of a transformed space. The value of this procedure is well established and well 
understood, thus it is not discussed further. 

Nonuniform meshes in the physical space are commonly employed to space mesh 
points closely in regions where gradients are large and fine details are desired, and to 
space mesh points widely in the remainder of the physical space. Computational time 
is dependent (sometimes exponentially) on the total number of mesh points in the 
physical space. By the careful choice of a nonuniform mesh, a given number of mesh 
points can be distributed over the physical space in an optimum manner, thus 
minimizing computational time. When only first-order accuracy is desired, the use of 
nonuniform meshes presents no special problems. When higher-order accuracy is 
desired, serious problems are encountered. This has led to the extensive use of coor- 
dinate transformations to map nonuniform meshes in the physical space into uniform 
meshes in the transformed space. The present discussion is concerned with the 
relationship between the truncation errors of centered finite-difference approximations 
applied directly on the nonuniform physical mesh and the truncation errors of the 
same centered finite-difference approximations applied on the corresponding 
transformed uniform mesh. 

The most common grid generation methods are conformal transformations, 
algebraic methods, and methods based on the solution of Poisson’s equation. The 
results of applying a grid generation method are two grid systems: the desired 
nonuniform mesh in the physical space and the corresponding uniform mesh in the 
transformed space. 
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After the two grid systems have been generated, two approaches exist for 
constructing finite-difference approximations to derivatives. The most common 
approach is to construct the finite-difference approximations on the uniform mesh in 
the transformed space. The advantage of this approach is that two- or three-point (for 
first or second derivatives, respectively) centered finite-difference operators yield 
second-order accurate approximations. The disadvantage of this approach is that the 
transformed differential equations must be solved. Those equations are considerably 
more complicated than the original differential equations since each term is multiplied 
by a transformation metric, and more terms are present. 

An alternate approach is to construct the finite-difference approximations on the 
nonuniform mesh in the physical space. In this case, the grid generation method is 
used merely to achieve the desired nonuniform mesh in the physical space. The 
advantage of this approach is that the original differential equations are solved. The 
disadvantage of this approach is that the two- or three-point centered finite-difference 
operators, when appled on a nonuniform mesh, do not yield second-order accurate 
approximations. 

Hirt and Ramshaw [l] and Roache [2] show that finite-difference approximations 
on a nonuniform mesh have lower-order formal accuracy than finite-difference 
approximations on a uniform mesh. Hirt and Ramshaw also show that the truncation 
errors of the two approaches are identical for the algebraic coordinate transformation 
they employed. Consequently, they chose to construct finite-difference approx- 
imations on the nonuniform mesh in the physical space. Roache, on the other hand, 
concludes that the approach employing the transformed uniform mesh is preferable 
because of the higher-order formal accuracy. 

Which approach is more accurate ? What are the relationships between the two 
approaches? The present discussion examines the two approaches in detail and 
clarifies the relationships between them. 

Consider the function 

f = 4(x> (1) 

The functionfis discretized at the points xi, where the xi form a nonuniform mesh. A 
centered finite-difference approximation tof, at point i is given by 

f = 4i+l-4ip1 
x 

xi+l -xi-l 

Expanding 4(x) in a Taylor series yields 

Oi* 1 = 4i f 4xlidx* + f4xxlidx: + Otdx:) (3) 

where dx, = (xi+ i - xi) and AX- = (xi - Xi-i). Thus, 

~j+I-#i-l=#xlj(dX+ +dx-)+5~,,lj(dx:-dx2)+o(dx:) (4) 
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For the nonuniform mesh, 

xi+l-xi-l =(xi+Ax+)-(xi-Ax~)=dx+ +Ax- 

Combining Eqs. (2), (4), and (5) yields 

L=4oxli + f~.~xlf(~~+ -Ax-) + o(Axi). 

(5) 

(6) 

Equation (6) shows that fX is formally first order in Ax,. Consequently, for any 
initial mesh spacing, if the number of grid points is doubled in a manner so that the 
values of Ax, are halved, the truncation error halves. 

Consider the coordinate transformation r = c(x) and its inverse x = r(T): 

r = 4(x) and x = v(r) (7) 

By emplying Eq. (7), Eq. (1) may be transformed to 

f = 46) = 9[?(01 = 440 (8) 
The first derivative f, is given by 

fx = v~rx = w,L (9) 

The function f = I&<) is discretized at the points &, where the ti form a uniform 
mesh. A centered finite-difference approximation to f, at point i is given by 

~,=~,I~ Wf+l-vi-1 

&+I -4-l 
(10) 

Expanding w(c) in a Taylor series yields 

‘(/i* 1~ Vi l Il/lliAt + fWl.rIiAt2 + O(AY3) (11) 

where At = A<+ = (&+ , - ri) = A<- = (CTi - (i- 1). Thus, 

V/i+ I- Vi-1 = 2WlliAr + O(At3) (12) 

For the uniform mesh, 

C+1-C-l=(C+Ar)-(ri-Ar)=2A5 (13) 

Combining Eqs. (lo), (12), and (13) yields 

.Fx = CxIi WlIi + O(At2) (14) 

Equation (18) shows that 7, is formally second order in A<. Consequently, for any 
initial mesh spacing, if the number of grid points is doubled in a manner so. that the 
values of At are halved, the truncation error quarters. 

From Eqs. (6) and (14), it appears that jX has first-order accuracy because of the 
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nonuniform mesh. This is true if the values of Ax, are halved as the mesh is refined 
by doubling the number of mesh points. If, however, the values of Ax, are chosen so 
that the term (Ax, -Ax_) in Eq. (6) quarters as the number of mesh points is 
doubled, then the truncation error ofjX behaves in a second-order manner. 

A procedure for determining the required values of Ax, to achieve a second-order 
truncation error for TX is obtained by expanding the coordinate transformation 
x = q(r) in a Taylor series. Thus, 

Xi+ 1 =Xi l ~lliA< + ~V~~liAt* * ~V~~~liAt3 + O(At4) (15) 

The term (Ax, -Ax-) can be written as 

Ax, -Ax- = (xi+ 1 - Xi) - (Xi - Xi- 1) = (X*+ * - Xi) + (Xi- 1 - Xi) (16) 

Substituting Eq. (15) into Eq. (16) yields 

Ax, -Ax- = tjtr A<= + O(At4) (17) 

Consequently, if the values of Ax, are chosen so that the values of A< are halved, the 
term (Ax, -Ax-) quarters and the truncation error offX quarters. Thus, the linite- 
difference approximation TX, which is formally first order in Ax,, behaves in a 
second-order manner. It is not necessary to actually apply the coordinate transfor- 
mation to the differential equations. All that is required is that the spacing of the 
nonuniform mesh corresponds to the coordinate transformation. 

The relationship between the truncation errors of the two approaches is obtained 
by considering a particular set of corresponding points in x space and r space, where 
those in r space are equally spaced. Thus, 

where 

From Eq. (15), 

From Eq. (7), 

fi*,=~(xi*l)=di*I=W(ri*I)=v/i*I (18) 

xii I = rl(ti* I> (19) 

xitl - Xi- 1~ 2vlliAt + O(AY’) (20) 

h= rlrdt and d<=C,dx (21) 

For continuous transformations having unique continuous inverses, 

Consequently, Eq. (20) may be written as 

x1+1 -XI-I = ut//(CxIi) + O(At3) 

(22) 

(23) 
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Substituting Eqs. (18) and (23) into Eq. (2) and comparing with Eq. (10) gives 

$ = h+*-h-1 =(, 11+1-vi-1 
x 

xi+1 -xi-1 x’ c+1-c-1 
+ O(AC2) =j;, + O(AC2) (24) 

Consequently, rX and jX differ by second-order terms in r for a particular set of 
corresponding points in x space and < space. For coordinate transformations x = q(l) 
that are polynomials of second degree or less, all derivatives of v of higher order than 
2 are identically zero, and the OjA(2J terms in Eqs. (20), (23), and (24) are iden- 
tically zero. In that special case, f, =f, exactly, and the two finite-difference approx- 
imations have the same truncation error. That is the situation considered by Hirt and 
Ramshaw [ 11. In general, however, thg coordinate transformation x = ~(0 is not a 
second-degree polynomial, and $, and f, differ by second-order terms. 

The general features demonstarted in the foregoing for centered finite-difference 
approximations to f, also apply to f,,. 

The above analysis illustrates the effect of coordinate transformations on the 
accuracy of centered finite-difference approximations. It is seen that a finite-difference 
approximation in a nonuniform mesh is formally first order and a finite-difference 
approximation in a uniform mesh is formally second order. The finite-difference 
approximation in the nonuniform mesh, however, behaves in a second-order manner 
if the mesh points of the nonuniform mesh are chosen in accordance with the 
cordinate transformation. The truncation errors of centered finite-difference approx- 
imations in the two meshes differ by second-order terms. For f,, the truncation errors 
are identical for coordinate transformations x = v(c) that are second-degree 
polynomials, and for f,.,, the truncation errors are identical for coordinate transfor- 
mations x = q(r) that are first-degree polynomials. 

In principle, any nonuniform mesh having n points, no matter how nonuniform, 
may be transformed into a uniform mesh by some coordinate transformation having 
n free parameters. Centered finite-difference approximations in the nonuniform mesh 
are then second order with respect to the transformed uniform mesh. However, the 
coordinate transformations required to transform highly irregular meshes into 
uniform meshes may have inflection points, large values of the higher-order 
derivatives, and multivalued regions. Even though these coordinate transformations 
yield second-order finite-difference approximations, the truncation errors may be 
quite large. In general, the best results are obtained with smooth coordinate transfor- 
mations. 

The objective of applying a coordinate transformation is to obtain a desired 
nonuniform mesh in the physical space. The choice between writing finite-difference 
approximations in the untransformed nonuniform mesh or the transformed uniform 
mesh should be based on considerations of numerical accuracy and computational 
efficiency. From the analysis presented herein, it is clear that both approaches can 
yield second-order finite-difference algorithms. Consequently, both approaches have 
their uses in the field of numerical analysis, and numerical analysts should be aware 
of both approaches. 
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